ТГиК-2019-Лекция-25.11.2019

Материал из Кафедра Прикладной Математики
Перейти к навигации Перейти к поиску

Тема лекции - алгоритм поиска в ширину и алгоритм поиска в глубину

BFS

Пусть задан граф \(G = (V,E) \). Зададим его списком смежности.

  • Выберем некую вершину, корень. Обозначим её \(s\)
  • Пусть \(colors\) - массив "цветов вершин".
  • Цветов всего 3:

1. \(white\) - "вершина не посещена"

2. \( { \color{gray} {gray}} \) - "вершина рассматривается"

3. \( { \color{black} black} \) - "вершина уже просмотрена"

  • \(d\) - расстояние от данной вершины до корня
  • \(p\) - предок вершины

Замечание: если пути нет, \(d = \infty \mbox{, } d(s)=0 \)

Запишем алгоритм на псевдокоде.

import math

def dfs(adj, s):
    colors = ["white"] * len(adj)
    d = [math.inf] * len(adj)
    p = [-1] * len(adj)

    colors[s] = "gray"
    d[s] = 0
    p[s] = -1

    queue = []
    queue.append(s)

    while len(queue) != 0:
        u = queue.pop(0)

        for v in adj[u]:
            if colors[v] == "white":
                colors[v] = "gray"
                d[v] = d[u] + 1
                p[v] = u

                queue.append(u)
        colors[u] = "black"

Какова же сложность данного алгоритма? Мы просматриваем все вершины и просматриваем все списки смежности. Следовательно, так как при использовании статической очереди добавление и удаление вершин происходят за \(O(1)\), то сложность BFS \(O(|V| + |E|) \)

рис.1. BFS

Схематичное представление BFS

Рассмотрим пошаговую реализацию BFS (рис.1)

Шаг 1. Начинаем с вершины 0. Помечаем её серым (рис.А). Добавляем эту вершину в очередь

Содержимое очереди \( Q = [0] \)

Шаг 2. Вершина 0 просмотрена, помечаем её чёрным, удаляем её из очереди (рис.Б). Перейдём к соседям вершины 0: 1, 2, 3. Помечаем их серым.

Содержимое очереди \( Q = [1, 2, 3] \)

Шаг 3. Переходим конкретно к вершине 1. У неё есть "белый" сосед: 4. Помечаем вершину 1 черным, удаляем её из очереди. Рассматриваем вершину 4, помечаем её серым. (рис.В)

Содержимое очереди \( Q = [2, 3, 4] \)

Шаг 4. У вершины 4 нет "белых" соседей. Значит, возвращаемся назад. Вершина 1 уже чёрная, переходим к вершине 2. У неё есть "белые" соседи: вершины 5 и 6. Помечаем их серым, а вершину 2 помечаем чёрным, она просмотрена (рис.Г)

Содержимое очереди \( Q = [3, 4, 5, 6] \)

Шаг 5. В результате, все вершины просмотрены. Помечаем их все чёрным.